not possible. This could work for orbiting probes but only if you send up a little fuel with it as well. The orbital mechanics work out so that the probe will fall to the height of the catapult which is in the atmosphere.
I’d imagine having the propellant tanks, plumbing, valves and engines survive 10,000Gs without crumpling or deforming to the point of failure is going to be a bit of an issue. Any thin and lightweight structures like foldable solar panels (and their deployment mechanisms) are also going to be tricky.
not possible. This could work for orbiting probes but only if you send up a little fuel with it as well. The orbital mechanics work out so that the probe will fall to the height of the catapult which is in the atmosphere.
What prevents them from doing exactly that?
Lots of (all?) satellites have propulsion systems to make orbit adjustments anyway. Is it that complicated to bolster them a bit for that purpose?
I’d imagine having the propellant tanks, plumbing, valves and engines survive 10,000Gs without crumpling or deforming to the point of failure is going to be a bit of an issue. Any thin and lightweight structures like foldable solar panels (and their deployment mechanisms) are also going to be tricky.
Hmm, but if the acceleration is gradual, shouldn’t it be fine?
Or are you referring to the constant centripetal acceleration felt by the object as it’s spinning?
Man is physics class far away